Lesson 034 Difference of Two Population Means

Monday, November 27

A 95% confidence interval for μ is formed as $[-2,3]$. Suppose that we wish to test H_{0} : $\mu=4$. Which of the following conclusions hold?

We reject H_{0} at a 5% level of significance.

We fail to reject H_{0} at a 5% level of significance.

We reject H_{0} at a 10% level of significance.

We fail to reject H_{0} at a 10% level of significance.

More than one of the above.

Suppose that the hypothesis test of $H_{0}: \mu=0$ has a compute p -value of 0.03 . Which of the following confidence intervals are plausible?

A 95% confidence interval of $[-1,1]$.

A 90% confidence interval of $[-1,1]$.

A 99% confidence interval of $[-1,1]$.

More than one of the above.

A 95% confidence interval for μ is formed as $[-2,3]$. Suppose that we wish to test H_{0} : $\mu=-1$. Which of the following conclusions hold?

We reject H_{0} at a 5% level of significance.

We fail to reject H_{0} at a 5% level of significance.

We reject H_{0} at a 1% level of significance.

We fail to reject H_{0} at a 1% level of significance.

More than one of the above.

Suppose that $H_{0}: \mu \geq \mu_{0}$ is tested against $H_{1}: \mu<\mu_{0}$, where $\hat{\mu}<\mu_{0}$. The p-value is computed as 0.03 . What would be the conclusion of testing $H_{0}: \mu=\mu_{0}$ at $\alpha=0.05$

We fail to reject H_{0}.

We reject H_{0}.

We cannot test this from the given information.

Suppose that the p -value for a (symmetric) test of $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ is 0.04. What would the p -value be for the same procedure of $H_{0}: \mu \leq \mu_{0}$ versus H_{1} : $\mu>\mu_{0}$.

0.02	0%
0.04	0%
0.96	0%
0.98	0%

We need more information.

Suppose that the p -value for a (symmetric) test of $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ is 0.04. What would the p -value be for the same procedure of $H_{0}: \mu \leq \mu_{0}$ versus H_{1} : $\mu>\mu_{0}$. Suppose $\widehat{\mu}<\mu_{0}$.

0.02	0%
0.04	0%
0.96	0%
0.98	0%

[^0]Suppose that the p -value for a (symmetric) test of $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ is 0.04. What would the p -value be for the same procedure of $H_{0}: \mu \leq \mu_{0}$ versus H_{1} : $\mu>\mu_{0}$. Suppose $\widehat{\mu}>\mu_{0}$.

0.02	0%
0.04	0%
0.96	0%
0.98	0%

[^1]
Comparing Populations

- We have assumed that there is only a single population of interest.
- What if we have two independent populations, and we wish to compare them?
- X_{1}, \ldots, X_{n} from a population with $E\left[X_{j}\right]=\mu_{1}$ and $\operatorname{var}\left(X_{j}\right)=\sigma_{1}^{2}$.
- Y_{1}, \ldots, Y_{m} from a population with $E\left[Y_{j}\right]=\mu_{2}$ and $\operatorname{var}\left(Y_{j}\right)=\sigma_{2}^{2}$.
- $X_{j} \perp Y_{\ell}$ for all j, ℓ.

Comparing Populations

- We want to compare μ_{1} and μ_{2}.
- Does one type of component last longer than another?
- Is one treatment more effective than another?
- Are the two facilities equivalent in terms of produced yield?
- The same techniques we have already seen will produce confidence intervals and hypothesis tests for the difference.
- We only need to understand the sampling distribution.

Estimating the Difference

- Recall that \bar{X} is an estimator for μ_{1} and \bar{Y} for μ_{2}.
- It seems reasonable to use $\bar{X}-\bar{Y}$ as an estimator for $\mu_{1}-\mu_{2}$.
- This is an unbiased estimator.
- The variance of $\operatorname{var}(\bar{X}-\bar{Y})=\operatorname{var}(\bar{X})+\operatorname{var}(\bar{Y})=\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}$.
- If the populations are normally distributed or if both n and m are large, we know that $\bar{X}-\bar{Y}$ is approximately normal.

Test Statistic for the Differences

- As a result, we can consider our standardized test statistic

$$
Z=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n+\sigma_{2}^{2} / n}} \dot{\sim} N(0,1)
$$

- This quantity can then be used to form confidence intervals or test for hypotheses exactly as we have seen for the one sample case.

Confidence Intervals for the Differences

- Based on the test statistic we can take an $100(1-\alpha) \% \mathrm{Cl}$ to be given by

$$
(\bar{X}-\bar{Y}) \pm Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}
$$

- The same procedure works for $\bar{Y}-\bar{X}$.

Hypothesis Tests for the Differences

- If we wish to test $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ versus the alternative that $H_{1}: \mu_{1}-\mu_{2} \neq \Delta_{0}$ this proceeds as expected.
- Assuming the null hypothesis is true ...

$$
T\left(\widehat{\Delta}, \Delta_{0}\right)=\frac{(\bar{X}-\bar{Y})-\Delta_{0}}{\sqrt{\sigma_{1}^{2} / n+\sigma_{2}^{2} / m}} \dot{\sim} N(0,1)
$$

- P-values or critical values are exactly as before.

Assumptions and Alternatives

- If both populations are normal with known variances, this procedure is exact.
- If at least one population is non-normal, with known variances, then this is approximately accurate for large n and m.
- If the variances are not known, can be replaced by S_{1}^{2} and S_{2}^{2}, in the above cases, for an approximately correct result.
- Otherwise, different distributions are required.

[^0]: We need more information.

[^1]: We need more information.

