Lesson 034 Difference of Two Population Means Monday, November 27

$\mu=4$. Which of the following conclusions hold?

We reject H_0 at a 5% level of significance.

We fail to reject H_0 at a 5% level of significance.

We reject H_0 at a 10% level of significance.

We fail to reject H_0 at a 10% level of significance.

More than one of the above.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

		0%

0%

Suppose that the hypothesis test of $H_0:\mu=0$ has a compute p-value of 0.03. Which of the following confidence intervals are plausible?

A 95% confidence interval of [-1,1].

A 90% confidence interval of [-1,1].

A 99% confidence interval of [-1,1].

More than one of the above.

A 95% confidence interval for μ is formed as [-2,3]. Suppose that we wish to test $H_0:$ $\mu=-1.$ Which of the following conclusions hold?

We reject H_0 at a 5% level of significance.

We fail to reject H_0 at a 5% level of significance.

We reject H_0 at a 1% level of significance.

We fail to reject H_0 at a 1% level of significance.

More than one of the above.

is computed as 0.03. What would be the conclusion of testing $H_0: \mu=\mu_0$ at lpha=0.05

We fail to reject H_0 .

We reject H_0 .

We cannot test this from the given information.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Suppose that $H_0:\mu\geq \mu_0$ is tested against $H_1:\mu<\mu_0$, where $\hat{\mu}<\mu_0$. The p-value 0% 0% 0%

Suppose that the p-value for a (symmetric) test of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ is 0.04. What would the p-value be for the same procedure of $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.

0.020.040.960.98 We need more information.

 $\mu > \mu_0$. Suppose $\widehat{\mu} < \mu_0$.

Comparing Populations

- We have assumed that there is only a single population of interest.
- What if we have two independent populations, and we wish to compare them?
 - X_1, \ldots, X_n from a population
 - Y_1, \ldots, Y_m from a population
 - $X_j \perp Y_{\ell}$ for all j, ℓ .

h with
$$E[X_j] = \mu_1$$
 and $\operatorname{var}(X_j) = \sigma_1^2$
h with $E[Y_j] = \mu_2$ and $\operatorname{var}(Y_j) = \sigma_2^2$

Comparing Populations

- We want to compare μ_1 and
 - Does one type of component last longer than another?
 - Is one treatment more effective than another?
 - Are the two facilities equivalent in terms of produced yield?
- The same techniques we have already seen will produce confidence intervals and hypothesis tests for the difference.
- We only need to understand the sampling distribution.

$$\mu_2$$
.

Estimating the Difference

- Recall that \overline{X} is an estimator for μ_1 and \overline{Y} for μ_2 .
- It seems reasonable to use $\overline{X} \overline{Y}$ as an estimator for $\mu_1 \mu_2$. • This is an unbiased estimator.
- The variance of $var(\overline{X} \overline{Y}) =$
- If the populations are normally distributed or if both n and m are large, we know that $\overline{X} - \overline{Y}$ is approximately normal.

$$= \operatorname{var}(\overline{X}) + \operatorname{var}(\overline{Y}) = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}.$$

Test Statistic for the Differences

• As a result, we can consider our standardized test statistic

 This quantity can then be used to form confidence intervals or test for hypotheses exactly as we have seen for the one sample case.

$$Z = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n + \sigma_2^2 / n}} \sim N(0, 1)$$

Confidence Intervals for the Differences • Based on the test statistic we can take an $100(1 - \alpha)$ % CI

to be given by

• The same procedure works for $Y - \overline{X}$.

Hypothesis Tests for the Differences

- If we wish to test $H_0: \mu_1 \mu_2 = \Delta_0$ versus the alternative that $H_1: \mu_1 - \mu_2 \neq \Delta_0$ this proceeds as expected.
- Assuming the null hypothesis is true ...

$$T(\widehat{\Delta}, \Delta_0) = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{\sigma_1^2/n + \sigma_2^2/m}} \stackrel{\sim}{\sim} N(0, 1)$$

$$2/n + \sigma_2^2/m$$

P-values or critical values are exactly as before.

Assumptions and Alternatives

- If both populations are normal with known variances, this procedure is exact.
- If at least one population is non-normal, with known \mathcal{M} .
- in the above cases, for an approximately correct result.
- Otherwise, different distributions are required.

variances, then this is approximately accurate for large n and

• If the variances are not known, can be replaced by S_1^2 and S_2^2 ,